ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRONICS AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
Photonics	ECE-523	FALL	3 + 0	3	10

Prerequisite Courses None

Туре	Selective
Language	English
Coordinator	Assoc. Prof. Ibrahim Ozdur
Instructor	Assoc. Prof. Ibrahim Ozdur
Adjunt	none
Aim	Photonics course intends to focus on basic concepts of light and photonics with their applications.
Learning Outcomes	 Learning Electromagnetic spectrum and its properties Learning beam optics and beam propagation Learning the polarization of light Learning the generation of light Learning Photodetectors Learning modulation of light Learning fiber optic cable
Course Content	 Electromagnetic spectrum Beam propagation Polarisation Lasers and LEDs Photodetectors Modulators Fiber optic cable

WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	Topic	Preliminary Study			
1	Fundamental concepts	The relevant articles from the literature			
2	Electromagnetic Spectrum	The relevant articles from the literature			
3	Beam optics and ABCD matrices	The relevant articles from the literature			
4	Gaussian beams and Gaussian beam propagation	The relevant articles from the literature			
5	Polarisation properties of light	The relevant articles from the literature			
6	Photon – atom interactions and properties of laser light	The relevant articles from the literature			
7	Laser types	The relevant articles from the literature			
8	LEDs	The relevant articles from the literature			
9	Photodetectors	"			
10	Midterm	The relevant articles from the literature			
11	Electro optic devices	The relevant articles from the literature			
12	Acousto optic devices	The relevant articles from the literature			
13	Electro-optical devices	The relevant articles from the literature			
14	Optical fiber cable	The relevant articles from the literature			
15	Fiber optic communication system	The relevant articles from the literature			

16	Final Exam	

SOURCES	
Lecture Notes	Lecture slides
E	Course Textbook: "Fundamentals of Photonics", Bahaa E. A. Saleh, Malvin Carl Teich, 2 nd Edition, Wiley Additional Materials: 1. "Photonics: Optical Electronics in Modern Communications", Amnon Yariv, Pochi Yeh, 6 nd Edition, 2006, Oxford Series in Electrical and Computer Engineering

COURSE MATERIALS SHARING			
Documents	Lecture notes, slides and molecular model set		
Homeworks	Students will be given one homework each two weeks		
Exams	1 Midterm and 1 Final Exam		

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
Midterm	1	20			
Homework	7	25			
Quiz	7	25			
SUB-TOTAL		70			
Contribution of Semester Study		70			
Contribution of Final Exam	1	30			
TOTAL		100			

Course Category	
Sciences and Mathematics	30%
Engineering	70%
Social Sciences	0%

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
N 5 0 115 1	Dragues Qualifications	Coi	Contribution Level				
INO	lo Program Qualifications	1	2	3	4	5	
1	Ability to use math, science and engineering knowledge in advanced research				Χ		
2	Ability to design, realize and analyze a novel system to solve engineering problems					x	
3	To be able to use modern measurement equipment, hardware and software for expertise area research				х		
4	Ability to plan and do detailed independent research					x	
5	Ability to do literature search, technical presentation, and prepare scientific manuscript					x	
6	Be able to do critical and creative thinking and finding innovative methods					Х	

^{*}Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	16	3	48			
Out-of-class Study Time (Pre-study, practice)	16	5	90			
Internet search, library work, literature search	16	4	64			
Presentation	1	21	21			
Homework	8	8	64			
Midterm	1	15	15			
Final Exam	1	20	20			
Total Work Load			322			

Total Work Load / 30	322/30
Course ECTS Credit	10